Synthesis and Evaluation of Carboxymethyl Glucoside as Montmorillonite Swelling Inhibitor

نویسندگان

  • Hua-rui Hao
  • Cheng-hu Xue
  • Gang Chen
  • Jing-rui Zhao
  • Li Hong
چکیده

Methylglucoside (MEG) has been used in the water-based mud with fine montmorillonite (MMT) swelling inhibition, but it still has such shortages as large concentration and low thermostability. In this work, carboxymethyl glucoside (CMG) was synthesized with glucose and sodium chloroacetate and used as swelling inhibitor. The inhibition of CMG against clay swelling was investigated by MMT linear expansion test, mud ball immersing test and bentonite inhibition test. The results showed that the CMG has a good inhibition to the hydration swelling and dispersion of MMT. Under lower concentrations, the linear expansion rate of MMT in CMG solution is much lower than that of MEG, and the hydration expansion degree of the mud ball in the CMG solution was significantly inhibited. The characterizations of physicalchemical properties of particle, analysized by thermogravimetric analysis and scanning electron microscopy revealed that CMG plays a great role in preventing water from absorbing and keeps MMT in large particle size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic/pH-sensitive nanocomposite hydrogel based carboxymethyl cellulose –g- polyacrylamide/montmorillonite for colon targeted drug delivery

Objective(s): The main aim of current research was to develop a novel magnetically responsive hydrogel by radical polymerization of carboxymethyl cellulose (CMC) on acryl amide (Am) using N,N'-methylene bis acrylamide  (MBA)  as a crosslinking agent, potassium persulfate (KPS) as a free radical initiator, and  magnetic montmorillonite ( mMT)  nanoclay as nano-...

متن کامل

Montmorillonite Nanocomposite Hydrogel Based on Poly(acrylicacid-co-acrylamide): Polymer Carrier for Controlled Release Systems

In this paper, the synthesis of new montmorillonite nanocomposite hydrogel (MMTNH) based on poly (acrylic acid-co-acrylamide) grafted onto starch, is described. Montmorillonite (MMT) as nanometer base, acrylic acid (AA) and acrylamide (AAm) as monomers, ammonium persulfate (APS) as an initiator, N,N-methylenebisacrylamide (MBA) as a crosslinker and starch as a biocompatible polymer were pre...

متن کامل

Synthesis and Swelling Behavior of Gelatin-Based Hydrogel Nanocomposites

In this work, a series of hydrogel nanocomposites were prepared by grafting acrylic acid and acrylamide on gelatin in the presence of Na-montmorillonite (Na-MMT) nanoparticles. The characterizations of hydrogel nanocomposites were examined by swelling experiments, Fourier transform infrared (FT-IR) spectroscopy, X-Ray diffraction (XRD) patterns and thermogravimetric analysis (TGA). Scanning ele...

متن کامل

Hybrid Nanocomposites of Montmorillonite/Copper Oxide, Synthesis and Evaluation as Effective Growth Inhibitors in Different Biological Systems

The external and interlamellar spaces of montmorilonite (MMT) were used as solid support for synthesis of CuO nanoparticles (NPs) at room temperature by the chemical reduction method. In this project, Copper Nitrate plus water (Cu(NO3)2. xH2O) and Sodium Hydroxide (NaOH) were used as Copper precursor and reducing agent respectively. Then, MMT/Cu2+ nanocomposites were stabilized with different r...

متن کامل

Hybrid Nanocomposites of Montmorillonite/Copper Oxide, Synthesis and Evaluation as Effective Growth Inhibitors in Different Biological Systems

The external and interlamellar spaces of montmorilonite (MMT) were used as solid support for synthesis of CuO nanoparticles (NPs) at room temperature by the chemical reduction method. In this project, Copper Nitrate plus water (Cu(NO3)2. xH2O) and Sodium Hydroxide (NaOH) were used as Copper precursor and reducing agent respectively. Then, MMT/Cu2+ nanocomposites were stabilized with different r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015